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The possibility of an anomalous effect of the component composition on distur- 
bance propagation in boiling solutions has been established. A criterion de- 
fining the cases in which the monotonic behavior of binary systems with re- 
spect to concentration is disturbed during sound propagation in them has been 
derived. 

i. Fundamental Equations. The dynamics of bubbles in a liquid depends on the thermal 
conductivity and diffusion in the gaseous and the liquid phases and the inertia of the liquid 
as it moves around a bubble [1]. During the growth of vapor bubbles in superheated liquids, 
the inertia of the liquid hardly affects the process, which is determined only by the thermal 
conductivity and diffusion, which applies only to the liquid phase. This is connected with 
the fact that, in boiling liquids (in contrast to bubbles in cold liquids), equalization of 
the concentration of components and of the temperature occurs much faster within bubbles than 
in the liquid, and, therefore, the temperature and the concentrations of components within a 
bubble can be assumed to be uniform, always satisfying the equilibrium conditions, but chang- 
ing in time. The theoretical basis for analyzing such a process is provided by Scriven's 
self-similar solution [2]. A survey of papers dealing with this problem is given in [i]. 

Under shock action on a solution where bubbles exist already or may develop, the behavior 
of bubbles in the liquid depends on the thermal, diffusion, and also inertial factors. A 
suitable formulation was presented and developed in [3]. The propagation of small distur- 
bances in single-component, liquid-vapor bubble systems has been investigated in several pa- 
pers, which are discussed in survey [4]. We should like to mention papers [5, 6] from among 
those not considered in [4]. 

We have investigated the propagation of acoustic disturbances in binary vapor-liquid 
bubble media. 

Assume there is a binary liquid mixture containing spherical vapor bubbles of equal ra- 
dius. One-velocity flow is contemplated. Then, in order to take into account the interphase 
heat and mass exchange, we use theequations of thermal conductivity and binary diffusion, 
written with an allowance for spherical symmetry within and around a sample bubble, and also 
a system of boundary conditions for these equations [4]. 

The system of macroscopic equations of phase mass conservation and of numerical concen- 
tration of bubbles for plane unidimensional motion in the linear approximation is given by 
[7] 

Op~ av _ 7, 0p._s av = j, On Ov 
at  " + P~o a x  at  + p~o a--~ a--7- + no - -  = O, 

- -  ' Ox (1)  

3 ~a3n'~ J = 4~a~ no]. (2)  

The subscripts i = i, 2 pertain to the liquid and vapor parameters, Oi, Pi ~ , ~i, v, n, and a 
are the density averaged with respect to the mixture, the density averaged with respect to 
phase, the volumetric phase percentage, the velocity, the number of bubbles per unit volume 
of the mixture, and the bubble radius, respectively; J and j are the phase transition inten- 
sities, reduced to unit volume of the mixture and unit surface area of the interface, respec- 
tively. The parameters pertaining to the unperturbed state have the additional subscript 0. 

Department of Physics and Mathematics, Bashkir Branch, Academy of Sciences of the USSR, 
Ufa. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 5, pp. 709-715, May, 1989. 
Original article submitted November 12, 1987. 

0022-0841/89/5605-0495512.50 �9 1989 Plenum Publishing Corporation 495 



We write the momentum equation for the entire mixture, 

Ov Op~ = 0 (3 )  Oo~+ ax 

and the equation of radial bubble variations in the linear approximation 

OWl Wl ( ) /9~0 .  (4) ao- - -~-+-4v l  �9 = P2- -P l+  2~ a 
ao ~o ao 

Here, p is the pressure, w i is the radial mass velocity of the phases at the bubble surface, 
and c and ~l are the surface tension coefficient and the viscosity coefficient of the liquid. 

The equations of thermal conductivity and diffusion are given by [3]: 

or; 1 o (zr or; ) 
O~~ O--T - =  r ~ Or Or J' 

Og(')-----'-'-A-l r 21 O Og(,),Or ) ( r >  a~ (5) 

p00C2 ~ --= r z @r )~2r2 -~ - -~ - - '  

Here, r i s  the  m i c r o c o o r d i n a t e  [ 3 ] ,  wh ich  r e p r e s e n t s  the  d i s t a n c e  from the  c e n t e r  o f  the  bub- 
b l e ,  T i '  i s  the  phase t empera tu re ,  g ( i ) k '  i s  t he  mass c o n c e n t r a t i o n  o f  the  k - t h  component o f  
the binary system in the i-th phase, X i and D i are the coefficients of thermal conductivity 
and diffusion, respectively, and c I and c 2 are the specific heat values at constant pressure 
for the liquid and the vapor. The microparameters (i.e., the parameters which depend on r) 
are denoted by primes. The equation for T 2' is given without considering the term accounting 
for diffusion. 

The equation of state for the phases is written in the following form: 

Pt=P~o +C~(P?--P~ , P~= P2 R 2(g(2),/1~+(1 gC2)~/~2), (7)  

where C I is the velocity of sound in the liquid, R is the universal gas constant, and ~i are 
the molecular weights of the components. We also assume that Dalton's law [8] and the equal- 
pressure condition (P2' = P2) [3] hold for the vapor components of an imperfect solution: 

p. = "hp,(,) (To) N(,),o + V~p.(~) (7.) (] - -  N~,. o), N~.~ F~g~,~. + ~,,(1--g~,).)" ( 8 ) 

Here, Ps(k) is the saturation pressure of the pure k-th component, N(i)k' is the molar con- 
centration of the k-th component in the i-th phase, and 7i and 72 are the activity coeffi,- 
cients. The subscript a signifies that the parameter values pertain to the interface between 
phases. The Clapeyron-Clausius relationships hold for partial pressures of the components, 

dp,(h ) _ ~l~p~(~) k = 1, 2, (9)  
dT~ RT~ ' 

where s is the specific heat of vaporization. 

The equilibrium conditions for the unperturbed state are 

Tlo =T2o ~ To, P2o = Plo+2~/ao, 

P~o = ?IPs( l ) (To) N(t~ 1o -I- Y~Ps( ~ ) (T o) ( 1 - -  N(I~ Io). (io) 

The boundary conditions at the mobile boundary - the interface between phases - are written 
thus: 
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It is assumed that the heat of component mixing is much lower than the vaporization heat. 
Moreover, 

OT'2 = 0 ,  Og(~), = 0  (r = O). 
Or " Or (12)  

For the closure of the system of boundary relationships, it is necessary to assign one more 
condition each for T~' and g(~)~'. If the drops in temperature and concentration in the 
liquid near the phase interfaces occur at distances much smaller than the distance between 
bubbles, we can assume that 

r--+oo: T t = T o ,  g(~)~=g(mo.  (13)  

I f  t h e s e  d i s t a n c e s  a r e  c o m p a r a b l e  t o  e a c h  o t h e r ,  t h e  a d i a b a t i c  c o n d i t i o n s  and an a b s e n c e  o f  
mass  e x c h a n g e  b e t w e e n  s p h e r i c a l  c e l l s  [5] a r e  more a p p r o p r i a t e :  

ao OT i Og;~ ) 
r -- 1/~ : = 0, -- O. (14) 

~Z2o Or Or 

We seek the solution of the reduced system in the form of a damped traveling wave: 

p, v, w, n, a ,-, exp [i (Kx - -  cot)l, T '  = T (r) exp [i (Kx - -  ot)], 

g '  = g (r) exp [i (Kx - -  ~ot)], K = k + i6, (15) 

where 6 is the damping coefficient, and C = ~/k is the phase velocity. On the basis of the 
condition for the existence of this type of solution, we obtain the following dispersion re- 
lation [for boundary conditions in the form of (14)]: 

- 0 2 (o 2 "---9o~ 91oC1 -~-3 
. . . .  o ~ 2 _ 4 i 9 ~ o v 1 ~ _ 2 a / a o ,  , ~ = 6 7 P 2 o "  " - -P lo~  ao 

/7 = 1 + (? - -  1) (1 - -  %1)/72 (Y~) + ? [%t#;  I/71 (z) Az + ((El - -  1) H~ (g2) + ELM/71 (Ul)) Ar ] A-l ,  

Ar -- ZteT~/71 (z0 + g(~.0 (I - -  g(~,10) Z~/7~ (z~) - -  
g(mo (1 - -  g(mo) 

- - ( 1 - -  1 ) (g(2~1o - -  gcmo) %1X~/72 (y2), 

A ~  = ( g , ~ . o  - -  g,1,1o) Z~ [x~n/71 (.yO + (z~ + I)/7~ (v~)] + 

+ g(~,~o (I - -  g(2)1o) z.2A/72 (z~), 

A = ( g ( u ) l o  - -  g(1)1o) (N(2)1o - -  N(mo) %1%2 (~1/7~ (bh) + / 7 2  (Y~)) + 
g(1)10 (1 - -  g(m0) 

_[_( ~1 8~-IHI(zl) - g (e , lo ( l - -g (e .o )  %2 H 2 ( z ~ ) ) ( I _ _  1 ) 
%2 g(1)1o ( 1 - -  g(1)1o) Z l  ~ " 

H1 (x) = 3 [1 - -  x (Mx th x (M - -  1) - -  1) (Mx  - -  th x (M - -  1)) -~] x -z, 
0 0 H2(x)  = 3 ( x c t h x - -  1)x -2, 7 = c-,p/c2v, ep = P2o/Pto' 

c.,.To l~ - -  l_____i_l - c--A--l, A l.z~2 - -  11~1 
Z~ = L----~-' X12 = L1 ' ~] : ~p 1 C2 RTo 

(16) 
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Fig. 1. Qualitative dependences of the phase velocity of sound C and 
the damping decrement 6 on the frequency m in a bubble vapor-liquid 
medium. 

Fig. 2. Phase velocity and the damping coefficient of sound in an 
aqueous solution of ethanol containing vapor bubbles; C (m/sec); m 
( s e e - : ) ;  8 ( m - l ) .  

Lz = t:gd~lO Jr l~ (1 --gd):o),  M ---- a~l/3,  

~i= 0 , Yi= --~-- , zi= --i-- (i= I, 2). 
Pi oC~ •  D~ 

We have written the expression for H by neglecting unity in comparison with ep-: The form 
of the E:(x) function presented corresponds to boundary conditions (14), while, for (13) we 
have 

17: (x) = 3 ( 1 + x) x -z. 

2. Calculation Results. Figure 1 shows schematically the dependences corresponding to 
(16): the phase velocity of sound C and the damping coefficient 8 as functions of the fre- 
quency m of forced oscillations (m-waves), generated by an external source, in a vapor-liquid 
bubble medium which is in equilibrium in the initial state. The solid curves correspond to 
the most characteristic media in states remote from the critical state. The dashed curves, 
defined by C e and mlr, where 

F 2 ~ y z  p~ V l --" ~ = ao:  - -  , 
c ,  = p00 V ' aor 

1 ~,, _ I ~ o q o  , ~ = 2 ~  

Yz = E---F- - -  1, (1 + ~1) ocoo 3?p2oao 

( ) (V-- 1)Xgn, ~x= 1 - -  1 ( g ' ~ ' : ~ 1 7 6 1 7 6 1 7 6  X~ c~ , 
�9 . ? gu~xo (1 -- g<:>:o) c2 

correspond to the one-temperature (homothermic), dissipation-free scheme with uniform concen- 
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Fig. 3. Phase velocity of sound in an aqueous solution of 
ethylene glycol containing vapor bubbles. 

Fig. 4. Coefficient of sound damping in an aqueous solution 
of ethylene glycol containing vapor bubbles. 

trations and uniform and equal phase temperatures in a cell (vl = 0; D I = D 2 = ~; 11 = 12 = 

~). The dash-dot curves, defined by C o and mM, where Co = /ypo/Plo~ ~M = ao-l~ 
p10 ~ and P0 = P10 = P20 correspond to a dissipation-free scheme without thermal conductivity 

and diffusion (vl = 0, D I = D 2 = 0, and 11 = 12 = 0). Abnormally heavy damping of distur- 

bances occurs in the frequency range m M S w ~ ~c (mc = mM /i + a20/a2,, a=, = yp0/p10~ 

Figure 2 shows the phase velocity and the damping coefficient as functions of the fre- 
quency for an aqueous solution of ethanol for P10 = 0.i MPa, a20 = 10-2, Go = 10-3 m. The 
solid curve corresponds to a vapor-water mixture (g(1)10 = i), the dashed curve pertains to 
a solution with g(i)i0 = 0.5, while the dash-dot Curve corresponds to g(i)I0 = 0. It is evi- 
dent here that the curves corresponding to a binary system lie between the curves for pure 
components. For g(1)!0 = 0.5, we have C e = 0.6 m/sec, WZr = 102 sec -I, Co = 118 m/sec, and 
~M = 2"I04 sec-1 Figures 3 and 4 provide the phase velocity and the damping coefficient as 
functions of the frequency for an aqueous solution of ethylene glycol for P0 = 0.i MPa, a20 = 
i0 -2, and a 0 = 10 -3 m. Curves 1-3 correspond to a vapor-water mixture (g(i)i0 = i), an aque- 
ous solution of ethylene glycol (g(~)~0 = 0.05), and pure ethylene glycol containing vapor 
(g(~)~0 = 0), respectively, while the dashed curves pertain to calculation based on the dif- 
fusion-equilibrium model (D~ =co). 

It is evident that, in the case of aqueous solutions of ethylene glycol, the damping 
and dissipation of sound in the solution, calculated with respect to the actual value of the 
diffusion coefficient, do not lie between the limiting values calculated for pure components. 
This is connected with the cardinal effect of diffusion in the liquid phase on the phase 
transition intensity (the diffusion resistance effect). In the variant calculated above, 
for a water concentration of only 5% in the solution, the water vapor concentration in the 
vapor phase reaches 85%. Therefore, it is clear that the phase transition intensity is lim- 
ited by the ability of the water component to diffuse through the less volatile ethylene 
glycol. 

However, it would be important to find a quantitative criterion which would define the 
cases where a "diffusion lag" of phase transitions occurs, where one could expect that the 
monotonic behavior of binary systems with respect to concentration during sound propagation 
in them would be disturbed. 

An analysis of the dispersion relation and numerical calculations indicate that we can 
assume the following for many binary media: 

AT = Xi~pl~qi (Zl) , Ag ---~ (g(9)lo - -  ~(1)1o) %i%9~//1 (Yl), 

A = -,Z~ e o-~ (1--~,-9-~17~ (z 0 + (g~o--g~mo)(N~2~o--N~,o) ~;r 
X~ g(mo (1 -- g(mo) 

Then, the expression for H, which is responsible for nonequilibrium heat and mass exchange 
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in the dispersion equation, assumes the following form: 

n = I + ~HI (Y0 [I + ~ini (yOn]- i (zl)] -I, 

1~ = (?--1) X2~l' [3 '=(  1 -  '}'1) '(g'2'l~176176176 (1 -- g,x,lo) X~ c2eX 
(17) 

Consequently, we can neglect the nonequilibrium thermal and diffusion processes within bub- 
bles, and dissipation within the system is then basically determined by the problem of exter- 
nal heat and diffusion. 

The following asymptotic behavior holds for the function Hi(x) in the frequency range 
pertaining to the curves of Figs. 2-4: 

Hl(~=3/x, [x[> l, 
and, thus, 

1 + fi~Hx (YO n71 (zO = 1 + ~ 1/• 1 = 1 + ~. 

If the addition 62 due to the nonequilibrium diffusion process in the liquid is small 
(62 << i), the diffusion lag of phase transitions does not occur, and we use the dispersion 
expression for single-component, vapor-liquid bubble media with the effective characteristics 
to determine the phase velocity and the damping coefficient. For the specific vaporization 
heat, we should use its mean-mass value with regard to the vapor phase. 

In binary systems where 62 ~ i, we can expect the diffusion resistance effect, which re- 
duces the rate of phase transitions and, thus, leads to the anomalous effect of the component 
composition on the propagation of disturbances in boiling solutions. For the above binary 
systems (aqueous solutions of ethanol and ethylene glycol), the values of the 62 parameter 
where equal to 0.i and 7.7, respectively. 

In view of the difficulties involved in direct experimental determination of the concen- 
tration and the mutual diffusion coefficient in solutions, it would be interesting to deter- 
mine them indirectly by measuring the damping and the velocity of sound in binary vapor-liquid 
media with a bubble structure. 
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